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ABSTRACT: The molar ratios of formaldehyde (F) to urea (U) of three resin formulations in the range from 0.90 to 1.49 have been

analyzed by means of Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy and Fourier Transform-Near-

Infrared (FT-NIR) spectroscopy. Application of Principal Component Analysis (PCA) to the spectra (MIR and NIR) allowed to sepa-

rate them according to the molar ratio and to distinguish between two groups of resins. Soft Independent Modeling of Class Analogy

(SIMCA) allowed classification of new resin samples with high model distances between the classes. Partial Least Squares Regression

(PLS-R) models based on MIR (NIR) spectra resulted in high coefficients of determination (R2) values, low errors, and high residual

prediction deviations (RPD). To confirm the reproducibility of the process and to carefully evaluate twice all multivariate analysis

results obtained, different batches of resins have been prepared to have an additional independent sample set. The number of

samples required for MIR and possible applications of MIR and NIR spectroscopy in this context including limitations have been

discussed. VC 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 000: 000–000, 2012
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INTRODUCTION

Formaldehyde-based resins, the most common wood adhesives

nowadays, are based on reactions of formaldehyde with phenol,

resorcinol, urea, melamine, or mixtures thereof.1 Urea-formalde-

hyde (UF) adhesives have strong positive aspects: very low cost,

nonflammability, very rapid cure rate, and a light color. On the

negative side, the bonds are not water-resistant and formalde-

hyde continues to evolve from the adhesive. UF adhesives are

the largest class of amino resins, and are the predominant adhe-

sives for interior grade plywood and particleboard.1

Although UF adhesives are known for and used since many

years, new formulations for their synthesis are still being based,

mostly, on trial and error experiments, due to many different

factors that affect the synthetic pathway, which are sometimes

difficult to control and accurately reproduce, and the difficulties

associated with the analysis (labor intensive, time consuming,

expensive) of the intermediate and final products. Kumlin and

Simonson have intensively studied the reactions and formations

of addition products as well as the condensation products of

urea formaldehyde resins.2–5 Christjanson et al.6 investigated in

detail the structure formation in urea-formaldehyde resin syn-

thesis with NMR. Overall, these studies demonstrate that a great

variety and diversity of UF structures, leading to resins with

different performance, can be produced by manipulating the

synthetic conditions.

FTIR (MIR, 4000�400 cm�1) is a well-known powerful analyti-

cal tool to detect functional groups by measuring fundamental

molecular vibrations,7 especially carbonyl groups (e.g., amide

bonds) that have a high molar absorptivity can be seen easily,

even at low contents. However, although being nondestructive,

using ATR devices coupled with a mid-infrared (MIR) instru-

ments is, until now, normally not used for on-line (in-line) pro-

cess control under conditions found in an industrial

VC 2012 Wiley Periodicals, Inc.

WWW.MATERIALSVIEWS.COM WILEYONLINELIBRARY.COM/APP J. APPL. POLYM. SCI. 2012, DOI: 10.1002/APP.38206 1



environment. This might be due to three facts or problems: (i)

MIR fiber optic ATR probes are usually made with a length of

1–2 m (although available up to 5 m), (ii) the wavenumber

range of the probe depends on the material (chalcogenide glass

probe for use from 6500 to 1700 cm�1 and polycrystalline Silver

halide probe for use from 2000 to 600 cm�1) and the ATR crys-

tal used (diamond, zinc selenide or zirconium dioxide), and

(iii) the still existing problem of fouling of the ATR crystal.

Therefore ATR-MIR (ATR-FTIR) is mainly used off-line or at-

line. Alternatively, NIR spectroscopy can be used when coupled

to a probe with optical fibers that allow for remote and nondes-

tructive operation. Absorption bands in the NIR region (13000–

4000 cm�1) arise from overtones and combination bands caused

by vibrations of CAO, OAH, CAH, and NAH groups, which

have their fundamental molecular vibrations in the MIR

region.7,8 The absorption signals of various constituents are con-

natural and highly overlapping and therefore in many cases the

bands cannot be directly related to the chemical abundance of a

single constituent.9 NIR spectroscopy is a rapid and nondestruc-

tive method used for process and quality control in many areas

such as food and beverages, agriculture, biotechnology, petro-

chemistry, pharmaceutical production,9,10 as well as for research

purposes in wood, pulp, and paper science for more than 20

years.11,12 Although NIR in combination with optical fibers has

been used since years for on-line (in-line) process control it is

still a challenge to use transmission probes in aqueous systems,

because the optical path length is limited to 1 mm, in order to

avoid total absorbance in the range of the combination water

band at about 5180 cm�1, and due to the fouling problem of the

small slit (1 mm) of a transmission probe.

As in various cases, the chemical information is hardly selective

within typically broad and extensively overlapping bands of NIR

spectra. Multivariate analysis techniques such as PCA have to be

used to model data relevant in information for classification

(SIMCA) and prediction of wood and waste properties, respec-

tively.10,13–22

The production of the urea-formaldehyde adhesives involves sev-

eral steps, with the first being the addition of the formaldehyde

to the urea under neutral or basic conditions,1 which can be fol-

lowed by infrared spectroscopy. MIR spectroscopy was already

used in 1967 to determine the UF resin content in paper,23 to

study the prepolymer and cured state,24 the curing reactions,25 to

identify and follow the appearance, increase, decrease, and disap-

pearance of several of the main chemical groups during the prep-

aration of the initial UF phase of the reaction and the subsequent

reaction of melamine with the UF resin that was formed.26

Moreover, it was used to investigate the structure development of

UF resins in a synthesis process, and to reveal structural differen-

ces of reaction inter-products of urea and formaldehyde that

were observed in alkaline and acidic media and at different F/U

molar ratios.27 MIR was also used to investigate the effects of

reaction pH condition and hardener type on the reactivity, chem-

ical structure, and molecular mobility of UF resins,28 as well as

for investigations of other adhesives,26,29–34

A method based on FT-NIR and chemometrics was developed

for the assessment of the pathway(s) followed during formalde-

hyde-based resin synthesis at both laboratory and industrial

scale.35 They have also made multivariate calibrations for urea

and formaldehyde for a wide concentration range. The effect of

pH and temperature on the structure of UF resins was moni-

tored by FT-NIR spectroscopy via optical fibers in situ,36 and

NIR spectroscopy was used in the production of modified

industrial resins.37 Moreover, a patent on the use of NIR spec-

troscopy in composite panel production exists.38

The aim of this study was to follow and evaluate the production

of three UF resins types by infrared spectroscopic methods. The

spectra have been collected simultaneously on two infrared

spectrometers to avoid possible influences due to aging effects.

Besides visual inspection of the spectra multivariate methods

were used for evaluation. PCA was used to identify differences

between the resins, SIMCA to classify them and PLS-R to deter-

mine the formaldehyde to urea molar ratio of UF resin formula-

tions. The results of the PLS-R models based on MIR and NIR

data have been compared. All multivariate analysis results have

been evaluated by an additional independent sample set. There-

fore, in order to proof the reproducibility of the process and to

carefully evaluate the obtained results different batches of resins

have been prepared independently.

EXPERIMENTAL DETAILS

Materials

Laboratory Resins Synthesis. The urea-formaldehyde (UF)

resin samples were produced in a 5-L round bottom flask

equipped with a mechanical stirrer and a thermometer

(immersed in the solution). A heating mantle controlled the

temperature. The flask was charged with formaldehyde, urea,

and water and the pH of the initial solution was adjusted with

a base (sodium hydroxide). The solution was heated up to the

desired temperature, and the pH was readjusted by the addition

of an acid. At this point, a second quantity of urea was added

to reach the desired molar ratio for the polymerization. When

the viscosity had reached a certain value (300–600 mP s), poly-

merization was terminated by the addition of a base. Finally,

the total amount of resin was divided in n parts (13 to 16 parts

depending on the resin type, see next paragraph) and a third

quantity of urea was added (to each of the n parts) to decrease

the molar ratio (MR) to the desired value (production of n

samples with different molar ratio) with the final viscosity

(150–300 mP s) and pH (8–9.5).

Three types of UF resins were produced, namely R1 (14 (12þ2)

samples; MR: 0.90–1.10), R2 (16 (13þ3) samples; MR: 1.11–

1.49), and R3 (13 (10þ3) samples; MR: 0.91–1.48). The range

was chosen taking into account that the usual molar ratio of

this type of resins, when industrially produced, is about 1.1.

Each resin type has been prepared twice, e.g., for the 14 samples

of R1, 12 samples have been prepared first and then additional

two samples have been prepared in a second batch for verifica-

tion and a second validation of the methods (PCA, SIMCA, and

PLS-R) to have an independent test set (TS2).

The resins R1 and R2 are very similar in terms of production as

they incorporate the same components; apart from formalde-

hyde, urea and water, they also have small amounts of
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melamine and hexamine in their formulations. The difference

between these two resins lies in the value of viscosity at which

the polymerization is terminated. Concerning the resin R3, it

does not incorporate melamine or hexamine; it is also termi-

nated at a different viscosity value.

Infrared Measurements. FT-NIR spectra were recorded at am-

bient temperature using a transmission-probe (1 mm optical

path length) connected to a Bruker (Bruker Optics, Ettlingen,

Germany) FT-NIR process-spectrometer (Matrix-F; TE-InGaAs

detector). 100 scans per spectrum (12,000–4000 cm�1) were col-

lected at a spectral resolution of 8 cm�1 and a zero filling of 2.

Air was used as background. After collection of each spectrum

the transmission probe was rinsed at least twice with water and

refilled with the new sample also at least twice before spectra

acquisition. Two spectra from each sample were collected and

averaged.

ATR-FTIR spectra (32 scans per sample, spectral resolution: 4

cm�1, wavenumber range: 4000–400 cm�1) using a diamond

single reflection attenuated total reflectance (ATR) device were

recorded with a Bruker FT-IR spectrometer (Alpha) and a zero

filling of 2 was applied.

Data Processing

Post spectroscopic manipulation was kept to a minimum. The

NIR spectra were used as obtained. Atmospheric compensation

in the full wavenumber range (4000 to 400 cm�1) and offset-

correction to the minimum between 1920 and 1880 cm�1 was

applied to the ATR - FTIR spectra (Software OPUS 6 from

Bruker). The maximum offset of the spectra before offset-cor-

rection was very small (0.02 ATR units) compared to the am-

ide-II band at 1540 cm�1 (0.90 ATR units), which in principle

could be neglected as identical results (not shown) were

obtained for all evaluations. Second derivatives of the NIR spec-

tra used to find band positions were obtained applying the

Savitzky-Golay39 algorithm with a 17 points smoothing filter

and a second order polynomial.

Multivariate Data Analysis

Principal component analyses (PCA) were performed using

OPUS Quant 2 (Bruker) and The Unscrambler Vsn 9.8 (CAMO

Software AS., Oslo, Norway). Soft independent modeling of

class analogy (SIMCA) was performed with The Unscrambler

Vsn 9.8.

Soft Independent Modeling of Class Analogy (SIMCA)—

Model Validation and Classification. SIMCA modeling con-

sisted in building one PCA model for each class of the three

resin types (R1, R2, and R3) which describes the structure of

that class, based on the infrared spectra (either MIR or NIR), as

well as possible. The optimal number of principal components

(PCs) for each model was chosen separately according to a full

cross validation. The samples used CVall (34) and TS2 (8) are

described later (see section Calibration models and validation of

the models). The MIR spectra in the wavenumber range from

1780 to 880 cm�1 and the NIR spectra in the wavenumber

range from 10,000 to 4160 cm�1 were used without any

preprocessing.

Before using the models to predict class membership for new

samples, their specificity, i.e., whether the classes overlap or are

sufficiently distant to each other was evaluated. The model dis-

tance is a measure (called ‘‘model-to-model distance’’) that shows

how different two models are from each other. It is computed

from the results of fitting all samples from each class to their

own model and to the other one. The value of this measure was

compared to 1 (distance of a model to itself). A model distance

much larger than 1 indicates that the two models are quite dif-

ferent, which in turn implies that the two classes are likely to be

well distinguished from each other. Distances of more than 3

indicate a significant segregation between the defined classes.40

The Cooman’s plot, where the sample-to-model distances are

plotted against each other for two models, includes class mem-

bership limits (significance level was set to 5%) for both mod-

els, so that it can be seen whether a sample is likely to belong

to one class, or both, or none. The Cooman’s plots used for

SIMCA validation were calculated for all class models as well as

for the classification of the test set samples (TS2) of each resin

formulation.

Partial Least Squares Regression (PLS-R) Modeling. OPUS

Quant 2 software was used for data preprocessing (e.g., 1st

derivatives þ vector normalization) and for the calculation and

validation of the PLS-R models. The measured spectra were

processed (smoothed and derived) by means of 17-points

smoothing filter and a second order polynomial to obtain first

derivatives with OPUS software (version 6,). For calibration

(cross validation, test set validation), the infrared data sets were

regressed against the formaldehyde to urea ratio. The numbers

of spectra subjected to PLS-R are indicated in the results and

discussion section.

Calibration Models and Validation of the Models. Firstly the

data set was divided into two groups (CV and TS1). After sort-

ing the whole data set according to the F/U ratio, about every

5th sample was chosen for the test set (TS1) and the remaining

for the calibration set/cross validation set (CV). The prepro-

cessed spectral data were regressed against the formaldehyde to

urea ratio and, by full cross validation, a significant number of

PLS factors was obtained.13

All models were calculated to a maximum of 10 PLS factors

and the results of the cross validation (R2 and RMSECV: root-

mean-square-error of cross validation) and the test set valida-

tion (R2 and RMSEP: root-mean-square-error of prediction)

were compared. Therefore, test set validation was performed

computing the calibration model with the optimal number of

PLS factors determined by cross validation (as usual in an exter-

nal validation), and also an optimal number of PLS factors was

defined through test set validation. The optimal number of PLS

factors was determined as follows:

1. The number of PLS factors with the smallest PRESS (pre-

dictive residual error sum of squares ¼ sum of all squared

differences between true and predicted values) value was

searched.

2. For all lower numbers of PLS factors, the quotient of their

PRESS values and the minimum was calculated (¼Fvalue).
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3. From this F value, a probability was calculated [Fprob(Fvalue,

M, M), whereM is the number of samples].

4. The number of PLS factors, having a probability smaller

than 0.75 for the first time, was chosen as the optimal

number of PLS factors.

The comparison of the number of PLS factors gives a first indi-

cation of the predictive ability of the model, because models

with large differences between the number of PLS factors deter-

mined by CV and TS are never satisfactory.13,41,42 Thereafter,

the CV and TS1 samples were combined giving the CVall sam-

ple set for calibration / cross validation, to have a larger sample

set covering more spectral variation. These models were eval-

uated by an additional independent test set (TS2).

The RPD (residual prediction deviation or ratio of performance

to deviation) was introduced by Williams and Norris8 several

years ago and is calculated as the ratio of two standard devia-

tions; the standard deviation of the reference data for the vali-

dation set and the standard error of prediction (from cross vali-

dation or test set validation).

RESULTS AND DISCUSSION

Both techniques (ATR-FTIR and FT-NIR) were investigated for

their applicability for classification and prediction of samples

covering a wide range as well as a narrow range of F/U molar

ratios of different resin formulations.

Spectra in the Mid-Infrared Region (FTIR)

Spectra of the resins R1 with the lowest (0.90) and R2 with the

highest (1.49) formaldehyde to urea molar ratio are shown in

Figure 1; the position, as well as the assignment of the bands of

these samples together with bands found for other samples (R2

and R3) with different MRs, are given in Table I. The intensity

of most of the bands decreases with increasing molar ratio and

additionally shifts to higher wavenumbers, also described by

others.26,27 They were able to describe the influence of pH

(alkaline and acidic media) and different formaldehyde-to-urea

molar ratio on the structural difference of reaction inter-prod-

ucts (e.g., ether linkages, methylene linkages, content of methyl-

ols and -NHCH2- groups),27 and to identify and follow the

appearance, increase, decrease, and disappearance of several of

the main chemical groups during the preparation of the initial

urea-formaldehyde (UF) phase of the reaction and the

Figure 1. ATR spectra of the resin R1 and R2 with molar ratios of 0.90

and 1.49 respectively covering the full range.

Table I. Band Positions in the ATR-FTIR Spectra and Their Assignment

Wavenumber (cm�1)

Resin 1 MR 0.90 Resin 2 MR 1.11 Resin 2 MR 1.49 Resin 3 MR 0.91 Band assignment

3336 3335 3331 3338 m(NH)7,26,43

2970 2970 2968 2969 ma(CH) of CH2

2901 2901 2901 2901 ms(CH) of CH2

1656 sh 1656 sh 1656 sh m(C¼¼O) of amide I (urea)26 and m(C¼¼N) from
the triazine ring of melamine 44

1622 1629 1635 1620 d(NH) of amide I (urea) 26

1540 1542 1544 1539 m(CAN and NAH) of amide II and secondary
amines,25,26,43

1460 1462 1464 1459 d(CH2),25,26,43,45

1383 1384 1385 1384 c(CH2),25,28,43

1356 1357 1361 1354 m(CAN),25,26,28,43

1290 sh 1290 sh 1290 1290 sh d(OH) plus amide III26,43

1251 1251 1251 1254 m(CAN) and m(NAH) of tertiary amines7,25,28

and ACH2A of ACH2AOACH2A
26

and ma(CAOH)32

1135 1135 1133 1135 m(CAO) of CAOAC25,26,28

1004 1003 1001 1004 m(CAO) of ACH2OH,28,43,45

MR, molar ratio; sh, shoulder; a, antisymmetric; s, symmetric.
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subsequent reaction of melamine with the UF resin that was

formed.26

A principal component analysis (PCA) performed using the fin-

gerprint region of the MIR spectra from 1780 to 880 cm�1 of

the CVall samples resulted in a separation of the samples in the

PC 1 – PC 2 score plot [Figure 2(A)]. Using the CVall þ TS2

sample sets gave the same pattern and loadings (not shown),

which confirms that the independent sample set TS2 fits per-

fectly to those of the CVall sample set. A separation according

to the molar ratio appears along PC 1. The corresponding load-

ing plot [Figure 2(B)] shows the variables (bands) responsible

for that. The loadings of PC 1 are almost identical with the dif-

ference spectrum [Figure 2(B)] of the spectra shown in Figure

1. This was expected because (i) the molar ratio decreases con-

tinuously along PC 1, and (ii) most of the variation between

the samples is due to the decreasing molar ratio (the increasing

urea content), which is expressed by the variance explained by

PC 1 (95%).

Figure 3. A–C: Cooman’s plots of the SIMCA model (3 PCs for R1 and 1 PC

each for R2 and R3) for the three resins R1, R2, and R3 based on the MIR spec-

tra in the wavenumber range from 1780 to 880 cm�1. The filled symbols repre-

sent the samples used for classification (TS2) on a significance level of 5%. The

horizontal and vertical lines in the graphs represent the confidence limits.

Figure 2. A: Scores plot PC 2 versus PC 1 of all resins MIR spectra in the

range from 1780 to 880 cm�1, and the corresponding loadings plots as

well as the difference spectrum B). The groups in (A) are labeled accord-

ing to the resin types (n R1, * R2, and ~ R3), and the samples accord-

ing to the molar ratios. The labels of the variables in (B) belong to the

PC 2 loadings.
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Along PC 2 the samples were divided into two groups R1 þ R2

and R3. The samples of R1 and R2 contain melamine and hex-

amine that is expressed by the variables (bands) at 1632 cm�1

(water and melamine), 1600 cm�1 ma (CAN amide II),27 1554

cm�1 (melamine and m(CAN and NAH) of amide II), 1486

cm�1 (urea, melamine, and hexamine) and 1241 cm�1 (hexam-

ine) [Figure 2(B)]. On the other hand, the samples of R3 have

more of the components represented by the variables (bands) at

1658 and 1610 cm�1 from urea, 1522, 1455, 1405, 1342, and 998

cm�1. More urea could mean that the amount of prepolymers is

lower in R3 compared with R1 and R2, which is confirmed by

the variables at about 1455 and 1160 cm�1 (seen in urea and

methylene diurea36), and the one at 1455 cm�1. The higher

formaldehyde content, 1405, 1342,27 and 998 cm�1, additionally

confirms this. The band at 1522 cm�1, NACAN of a proper

methylene bridge (ACH2A),26 and two bands around 1455 cm�1

at 1470 and 1438 cm�1 are assigned, respectively, to the bending

mode of methylene units in the NACH2AN and in the

CH2AOH structures31 (which can arrive from dimethylol urea,

monomethylol urea, and dimethylol methylene diurea) gives hint

to more addition products. Additionally the variables at 998

cm�1 supports that more addition products (methylol groups)

and less prepolymers were build.27 Moreover, two poly-condensa-

tion steps were performed producing R1 and R2, and only one

for R3. The differences in pH, temperature and reaction time

influence the ratio between addition products and prepolymers.

However, it has to be kept in mind that the spectral differences

between the R1 þ R2 samples and the R3 samples of the same

F/U ratio are very small and that the explained variance is only

3%. Therefore the differences in the content of each component,

of addition products as well as differences in the prepolymer

content can be very small too, which is additionally influenced

by pH, temperature, and reaction time during resin preparation.

Nevertheless, as identical results were obtained for the PCAs for

the CVall and CVall þ TS2 sample sets the explained variance of

3% is sufficient to draw the conclusions and confirms that the

process is highly reproducible which is a prerequisite for process

control.

Classification Using Soft Independent Modeling of Class

Analogy (SIMCA) and Model Validation

A separate full cross-validated model was created for each resin

requiring 3 PCs for R1 and 1 PC each for R2 and R3 to satisfac-

torily describe each data set. Models for R1, R2, and R3 explain

99.5%, 98.0%, and 99.5% of the data, respectively. The signifi-

cance level was set to 5%. The Cooman’s plots used for SIMCA

validation are shown for all class models as well as the classifica-

tion of the test set samples (TS2) of each resin formulation (Fig-

ure 3). Spectra of the test set samples (TS2) from each resin for-

mulation fall into the membership limits, confirming a correct

classification. The distances from SIMCA classes (R1, R2, and

R3) to the class R1 are 1 to the class R1, 23 to class R2, and 43

to class R3. The large distances of the established SIMCA confirm

the applicability of the MIR spectroscopic pattern to unequivo-

cally distinguish different resin formulations.

Spectra in the Near-Infrared Region (NIR)

The average spectra, as well as the second derivatives of the NIR

spectra of the resins R1, R2, and R3, are shown in Figure 4 and

the position as well as the assignment of the bands, are given in

Table II. The obvious baseline differences between the three

resin formulations [Figure 4(A)] in increasing order R3 < R1 <

R2 seem to be due to different poly-condensation reactions that

Figure 4. A: NIR average spectra of the resins R1, R2, and R3 from top

to bottom and their second derivatives in the wavenumber range B) from

7400 to 5500 cm�1 and C) from 5500 to 4100 cm�1.
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lead to ‘‘larger’’ (more condensed and branched) reaction prod-

ucts, which scatter a part of the NIR radiation. The changes of

bands (intensity and shifts) with decreasing molar ratio were

also found by others.35,36 Dessipri et al.35 show NIR spectra of

increasing urea concentrations as well as of several steps of F/U

ratios in the combination band range. Moreover, they followed

two pH dependencies of the evolution of the reaction progress

as indicator for two methylolation reaction and monitored an

acid-induced poly-condensation step of a resin synthesis. Kum-

lin and Simonson3 also examined the influence of pH, tempera-

ture, and F/U molar ratio and showed that the formation of

oxymethylenediurea compounds was favored at alkaline pH and

increased with increasing pH from 8.0 to 9.4, whereas the for-

mation of diurea compounds containing a methylene bridge

was strongly favored when the reaction mixture was made acidic

and increased with decreasing pH from 5.1 to 3.5. At low F/U

molar ratios (from 1.4 to 1.6), a minimum in the formation of

condensed products was found at a pH value of about 8, while

with increased molar ratio (F/U ¼ 2.2) the reaction minimum

appeared at neutral pH. In all cases, a high reaction temperature

greatly increased the condensation. Minopoulou et al.36 used

NIR for structural characterization of urea–formaldehyde resins

and found that the reactions of urea and formaldehyde at differ-

ent temperatures and pH values result in resins with different

structures and properties: Resins produced at high temperatures

and acidic pH values exhibit higher degrees of condensation,

presumably because of the development of more cross-linked

structures. In principle, their findings could be confirmed with

the three resin formulations used in the presented study.

Some of the bands were differently assigned in the literature

(see Table II). Minopoulou et al.36 also investigated UF model

compounds but unfortunately neither NIR spectra nor band

assignments were provided.

A principal component analysis (PCA) performed using the

region of the 1st derivative þ vector normalized NIR spectra

from 7502 to 5446 cm�1 and 4902 to 4158 cm�1 (the same

range as used later for the prediction of molar ratio) resulted in

a separation of the samples in the PC 1 – PC 2 score plot

[Figure 5(A)]. A separation according to the molar ratio

appears along PC 1. The corresponding loadings plots [Figure

5(B,C)] show the variables (bands) responsible for that. The

loadings of PC 1 in the lower combination band range (4902 to

4158 cm�1) [Figure 5(C)] are mainly dominated by bands rep-

resenting urea and formaldehyde. This was expected because i)

the molar ratio increases continuously along PC 1, and ii) most

of the variation between the samples is due to the increasing

molar ratio (lower urea content), which is expressed by the var-

iance explained by PC 1 (95%). The PC1 loadings are much

smaller in the higher wavenumber range [7502 - 5446 cm�1;

Figure 5(B)], whereas at higher frequencies the 2nd overtones as

well as the (ms þ ma) combination modes of the N–H stretches

are observed and several weak and sharp features appear in the

5800–5600 cm�1 range, where the overtones of the C–H stretch-

ing modes are expected. These features change in relative inten-

sity as formaldehyde reacts to methylolate urea, but a more

detailed assignment is not currently available. The differences

between R1 þ R2 and R3 that allow separating them along PC

2 have already been discussed in context with the MIR spectra.

Additionally, small differences in the formaldehyde content

Table II. Band Positions Determined from the Second Derivatives of the NIR Average Spectra and Their Assignment

Wavenumber (cm�1)

Formaldehyde 6M Urea 6M R1/R2/R3 Band assignment

6803 2ma(NH)46

6750 sh 6724 2ms(NH)46,36a

6668 ms(NH) þ ma(NH) comb. band46; 2ma(NH2)44

from melamine

6575 2ms(NH2)44 from melamine

5073 ms(NH2) þ d(NH2) comb. band36,44,b

5037 ms(NH2) þ d(NH2) comb. band36,44,b

5035 ma(NH) þ amide II46

4952 ms(NH) þ amide II46d and ms(NH2) þ d(NH2)36, c

4824 ma(NH) þ amide III46 should appear at 4808 cm�1

4644 4635 ma(NH2) þ q(NH2)36,e

4546 4548 ms(NH2) þ q(NH2)36,f

4436 4435 from methanol ??g

4315 ms(CH) þ d(CH2) comb. band36

4277 from methanol ??g

Only the bands labeled in Figure 4 and the bands form formaldehyde and urea are presented in the table. sh, shoulder; s, symmetric; a, antisymmetric;
comb, combination band.
aSecond overtone of the secondary NH bond stretch, indicating the formation of N, N0 disubstituted amide species, bCombination band NH stretching
plus NH bending at 5080–4980 cm�1, cCombination modes between the NAH stretches bending modes of the NH2 group, dShould appear at 4902
cm�1, eCombination modes between the NAH stretches and the rocking of the NH2 group, fCombination modes between the NAH stretches and the
rocking of the NH2 group 4645, 4549; according to Workman46 ma(NH2) þ q(NH2) should appear at 4505 cm�1.
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Figure 5. A: Scores plot PC 2 versus PC 1 of all resins NIR average spec-

tra in the ranges from 7502 to 5446 cm�1 and 4902 to 4158 cm�1, and

the corresponding loadings plots B) in the range from 7502 to 5446 cm�1

and C) from 4902 to 4158 cm�1. The groups in (A) are labeled according

to the resin types (n R1, * R2, and ~ R3), and the samples according

to the molar ratios.

Figure 6. A–C: Cooman’s plots of the SIMCA model (2 PCs) for the

three resins R1, R2, and R3 based on all NIR spectra in the wavenumber

range from 10,000–4160 cm�1. The filled symbols represent the samples

used for classification (TS2) on a significance level of 5%. The horizontal

and vertical lines in the graphs represent the confidence limits.
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between them (R1 þ R2 and R3), possibly due to the fact that

only one polycondensation step was performed for R3, are visi-

ble [Figure 5(C)].

Classification Using Soft Independent Modeling of Class

Analogy (SIMCA) and Model Validation

A separate full cross-validated model was created for each resin

requiring 2 PCs for each resin to satisfactorily describe each

data set. Models for R1, R2, and R3 explain 99.8%, 99.5%, and

99.8% of the data, respectively. The significance level was set to

5%. The Cooman’s plots used for SIMCA validation are shown

for all class models, as well as the classification of the test set

samples (TS2) of each resin formulation (Figure 6). Spectra of

the test set samples (TS2) from each resin formulation fall into

the membership limits, confirming a correct classification. The

distances from SIMCA class R1 to class R2 is 586 and from R1

to class R3 is 398. The big values for these distances are partly

due to the baseline differences between the resins. The large dis-

tances confirm the applicability of the NIR spectroscopic pat-

tern to unequivocally distinguish different resin formulations.

PLS-R Models for MIR and NIR Spectra

The data set was divided into 28 cross validation (CV) and 6 test

set (TS1) samples. Additionally 8 samples were used as a second

test set (TS2). The MIR-based PLS-R models were calculated

using the offset-corrected spectra (cp. experimental details, data

processing). The model statistics are summed up in Table III.

The NIR-based PLS-R models were calculated using the 1st de-

rivative þ vector normalization preprocessed spectra. The wave-

number range was restricted to two ranges from 7502 to 5446

and 4902 to 4158 cm�1. This was done on one hand to avoid

the noisy higher wavenumber range and on the other hand to

exclude the range of the water band at which the energy of the

transmitted infrared radiation was almost zero, especially for the

resin R2. The model statistics are summed up in Table III.

To prove the robustness of the MIR-based PLS-R model, the

number of samples left out during cross validation was

increased to 25 (of 34) resulting in the following statistics: R2 ¼
96%, RMSECV ¼ 0.03 and 3 PLS factors. For the NIR-based

PLS-R models the number of samples left out during cross vali-

dation was increased up to 25 (of 34) resulting in the following

statistics: R2 ¼ 98%, RMSECV ¼ 0.02 and 2 PLS factors.

Taking into account that the usual molar ratio of this type

of resins, when industrially produced, is close to 1.1, a narrower

F/U ratio range was investigated, namely 1.00–1.20. The results

(Table III) demonstrate that the models are of similar quality,

although only 21 samples were available for this F/U range and

the number of PLS factors was halved.

From an analytical point of view (in accordance with AACC

Method 39-0047), the RPD should be in the following range:

�2.5 screening in breeding programs; �5 acceptable for quality

control; �8 good for process control, development, and applied

research.47 It has to be kept in mind that the RPD is only cor-

rect and comparable when data are normally distributed.

The high RPDs (Table III) obtained for the MIR and NIR mod-

els allow drawing the conclusion that the models are applicable

for at-line as well as on-line (in-line) process control.

ATR-MIR (ATR-FTIR) could mainly be used at-line to check

the process intermediates and end product or off-line for qual-

ity control of outgoing and incoming products in the labora-

tory. Additionally ATR-MIR can be used for developing proc-

esses using MIR fiber optic ATR probes in a laboratory scale

reactor48 were the problems mentioned in the introduction

(limited length of the optical fibers, material of the ATR crystal,

and especially the fouling of the ATR crystal) can be handled.

When ATR-MIR is used at- or off-line the number of samples

required to calibrate the instrument can be as low as 20 (15 for

calibration and 5 for validation of the method) depending on

the variability of the samples and the required precision. Addi-

tionally the problem of varying temperatures that appear in the

process during resin production is not an issue at- or off-line.

The obtained NIR models with high RPDs and low errors are

promising that NIR could by applicable for in-line process con-

trol in the context of process analytical technology (PAT). How-

ever, the complexity of a real industrial process and

Table III. PLS-R Model Statistics for MIR and NIR

Range of F/U ratio 0.9–1.49
CV (28)a/TS1 (6) MIR NIR

No. of PLS factors 6 4

R2 (%) CV 99.9 99.8

RMSECV 0.005 0.007

RPD 30 21

Bias �0.00016 0.0004

R2 (%) TS1 99.98 99.9

RMSEP (TS1) 0.003 0.007

RPD (TS1) 73 29

Bias 0.0008 0.002

CVall (34)a/TS2 (8) MIR NIR

No. of PLS factors 6 4

R2 (%) CVall 99.9 99.8

RMSECV 0.005 0.007

RPD 34 25

Bias �0.0001 0.0001

R2 (%) TS2 99.9 99.8

RMSEP (TS2) 0.003 0.004

RPD (TS2) 34 25

Bias 0.00004 �0.0003

Range of F/U ratio 1.00–1.20

CV (21)a MIR NIR

No. of PLS factors 3 2

R2 (%) CV 99.3 99.5

RMSECV 0.005 0.005

RPD 12 13

Bias 0.0001 0.000008

MIR, spectra offset-corrected (cp. experimental details, data processing),
wavenumber range 1780–880 cm�1; NIR: 1st derivative þ vector nor-
malization, 2 ranges 7502–5446 cm�1 þ 4902–4158 cm�1.
aNumber of samples in brackets.
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environment has to be taken into account and as the spectra

have been collected off-line the model cannot be used for evalu-

ation of the process directly in a reactor, because e.g., spectra

from intermediates that are produced during the process and

the different temperatures appearing during the resin produc-

tion have not been taken into account. Especially the latter one

is known to influence the NIR spectra49–52 not only in the range

of the combination water band at about 5180 cm�1 and in the

range of the first overtone of the O-H stretching vibration

including the hydrogen bonds (7200–6400 cm�1). The influence

of the temperature on the NIR spectra would increase the num-

ber of spectra required for calibration. However, although it has

been shown that temperature-induced spectral variations can be

corrected,53 this influence could be eliminated by using a small

temperature-controlled by-pass with a transmission probe

instead of immersing the fiber probe directly into the reactor.

CONCLUSIONS

Applying PCA to the spectra (MIR and NIR) allowed to sepa-

rate the samples according to the molar ratio and to distinguish

between two groups of resins. Soft independent modeling of

class analogy (SIMCA) allowed classification of new resin sam-

ples with model distances between the classes up to 586.

On the basis of the knowledge acquired during this study, one

can suggest that only a few samples (15–20) are necessary to

calibrate ATR-FTIR. This means that a method for the determi-

nation of the F/U molar ratio can be obtained fast and with low

costs. PLS-R models based on either MIR or NIR spectra lead

to high R2, low RMSECV and low RMSEP, and high RPDs. The

double validation of the results by including a further inde-

pendent sample set revealed that the process is highly reproduc-

ible and that developed models are stable.

Both ATR-FTIR and FT-NIR spectroscopic techniques fulfill the

need for classification as well as prediction of samples covering

(a) a wide range of F/U molar ratios, (b) a narrower range of F/

U molar ratios, and (c) different resin formulations. The results

from this work also suggest that PLS-R models may be used to

control the molar ratio of the resin product as part of the pro-

cess analytical technology (PAT) of the process control on-line

(in-line) (FT-NIR) immersing the transmission probe directly in

the reactor or at-line (ATR-FTIR) during the resin preparation

in industrial processes. Moreover, especially ATR-FTIR could

also be a suitable tool for quality control of the incoming resin.
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